企业信息

    深圳市赛孚电路科技有限公司

  • 3
  • 公司认证: 营业执照已认证
  • 企业性质:
    成立时间:
  • 公司地址: 广东省 深圳市 东莞市长安镇睦邻路7号
  • 姓名: 陈生
  • 认证: 手机未认证 身份证未认证 微信未绑定

    供应分类

    毫米波雷达pcb厂商

  • 所属行业:电子 PCB机元器件 多层电路板
  • 发布日期:2022-11-23
  • 阅读量:69
  • 价格:面议
  • 产品规格:不限
  • 产品数量:不限
  • 包装说明:不限
  • 发货地址:广东深圳  
  • 关键词:PCB高频板

    毫米波雷达pcb厂商详细内容

    PCB的信号完整性与设计 在PCB的设计中,PCB设计人员需要把元器件的布局、布线及每种情况下应采用的何种SI问题解决方法综合起来,才能更好地解决PCB板的信号完整性问题.在某些情况下IC的选择能决定SI问题的数量和严重性.开关时间或边沿速率是指IC状态转换的速率,IC边沿速率越快,出现SI问题的可能性越高,正确地端接器件就很重要.PCB设计中减少信号完整性问题常用的方法是在传输线上增加端接元器件.在端接过程中,要权衡元器件数量、信号开关速度和电路功耗三方面的要求.例如增加端接元器件意味着PCB设计人员可用于布线的空间更少,而且在布局处理的后期增加端接元器件会更加困难,因为必须为新的元件和布线留出相应的空间.因此在PCB布局初期就应当搞清楚是否需要放置端接元器件. 1.信号完整性设计的一般准则: PCB的层数如何定义? 包括采用多少层?各个层的内容如何安排较合理?如应该有几层信号层、电源层和地层,信号层与地层如何交替排列等. 如何设计多种类的电源分块系统? 如3.3V、2.5V、3V、1.8V、5V、12V等等.电源层的合理分割和共地问题是PCB是否稳定的一个十分重要的因素. 如何配置退耦电容? 利用退耦电容来消除噪声是常用的手段,但如何确定其电容量?电容放置在什么位置?采用什么类型的电容等? 如何消除地弹噪声? 地弹噪声是如何影响和干扰有用信号的? 回路(Return Path)噪声如何消除?很多情况下,回路设计不合理是电路不工作的关键,而回路设计往往是工程师较束手无策的工作。 如何合理设计电流的分配? 尤其是电/地层中电流的分配设计十分困难,而总电流在PCB板中的分配如果不均匀,会直接明显地影响PCB板的不稳定工作。 另外还有一些常见的如过冲、欠冲、振铃、传输线时延、阻抗匹配、串扰、毛刺等有关信号畸变的问题,但这些问题和上述问题是不可分割的,它们之间是因果关系.

    确保信号完整性的PCB板设计准则 信号完整性(SI)问题解决得越早,设计的效率就越高,从而可避免在电路板设计完成之后才增加端接元器件.随着IC输出开关速度的提高,不管信号周期如何,几乎所有设计都遇到了信号完整性问题.即使过去没有遇到SI问题,但是随着电路工作频率的提高,一定会遇到信号完整性的问题.SI和EMC*在PCB布线之前要进行仿真和计算,然后,PCB板设计就可以遵循一系列非常严格的设计规则,在有疑问的地方,可以增加端接元器件,从而获得尽可能多的SI安全裕量.电源完整性(PI)与信号完整性(SI)是密切关联的,电源完整性直接影响较终PCB板的信号完整性.而且很多情况下,影响信号畸变的主要原因是电源系统.EMC设计目前主要采用设计规则检查方式,很重要的一点,就是企业必须逐步建立和完善适合企业特定领域产品的设计规范,形成一整套的EMC设计规则集.这些在国外的大公司非常普及,如三星和SONY.这些规则由人或者EDA软件来检查核对.

    ESD产生的机理 一个允电的导体接近另一个导时,两个导体之间会建立一个很强的电场,产生由电场引起的击穿。当两个导体之间的电压**过它们之间空气和绝缘介质的击穿电压时,就会产生ESD电弧。在0.7ns到10ns的时间里,ESD电弧电流会达到几十安培甚至**过100A。ESD电弧会产生一个频率范围在1MHz~500MHz的强磁场,并感性耦合到邻近的每一个布线环路,在距离ESD电弧10cm范围产生15A以上的电流,4KV以上的高压。ESD电弧将一直维持到两个导体接触短路或者电流低到不能维持电弧为止。

    抗ESD的PCB布局与布线设计 尽可能使用多层PCB板结构,在PCB板内层布置专门的电源和地平面。采用旁路和退耦电容。尽量将每一个信号层都紧靠一个电源层或地线层,对于**层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层走线。 确保每一个功能电路和各功能电路之间的元器件布局尽可能紧凑,对易受ESD影响的电路或敏感元器件,应该放在靠近PCB板中心的区域,这样其它的电路可以为它们提供一定的屏蔽作用。在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。 在ESD容易进入的设备I/0接口处以及人手经常需要触摸或操作的位置,比如复位键、通讯口、开/关机键、功能按键等。通常在接收端放置瞬态保护器、串联电阻或磁珠。 要确保信号线尽可能短,信号线的长度大于12inch(30cm)时,一定要平行布一条地线。 确保信号线和相应回路之间的环路面积尽可能小,对于长信号每隔几厘米或几英寸调换信号线和地线的位置来减小环路面积。 确保电源和地之间的环路面积尽可能小,在靠近集成电路芯片(IC)每一个电源管脚的地方放置一个高频电容。 在可能的情况下,要用地填充未使用的区域,每隔<2inch(5cm)距离将所有层的填充地连起来。 电源或地平面上开口长度**过8mm时,要用窄的导线将开口两侧连接起来。 复位线、中断信号线、或者边沿触发信号线不能布置在靠近PCB板边沿的地方。 在PCB板的整个外围四周布置环形地通路,尽可能使所有层的环形地宽度大于100mil。每隔500mil用过孔将所有层的环形地连接起来,信号线距离环形地>20mil(0.5mm)。

    PCB多层板解析 多层板的定义: PCB多层板是指用于电器产品中的多层线路板,多层板用上了更多单面板或双面板的布线板。用一块双面作内层、二块单面作外层或二块双面作内层、二块单面作外层的印刷线路板,通过定位系统及绝缘粘结材料交替在一起且导电图形按设计要求进行互连的印刷线路板就成为四层、六层印刷电路板了,也称为多层印刷线路板。 随着SMT(表面安装技术)的不断发展,以及新一代SMD(表面安装器件)的不断推出,如QFP、QFN、CSP、BGA(特别是MBGA),使电子产品更加智能化、小型化,因而推动了PCB工业技术的重大改革和进步。自1991年IBM公司首先成功开发出高密度多层板(SLC)以来,各国各大集团也相继开发出各种各样的高密度互连(HDI)微孔板。这些加工技术的迅猛发展,促使了PCB的设计已逐渐向多层、高密度布线的方向发展。多层印制板以其设计灵活、稳定可靠的电气性能和优越的经济性能,现已广泛应用于电子产品的生产制造中。 PCB多层板与单面板、双面板较大的不同就是增加了内部电源层(保持内电层)和接地层,电源和地线网络主要在电源层上布线。但是,多层板布线主要还是以**层和底层为主,以中间布线层为辅。因此,多层板的设计与双面板的设计方法基本相同,其关键在于如何优化内电层的布线,使电路板的布线更合理,电磁兼容性更好。 多层板的结构: 层压,顾名思义,就是把各层线路薄板粘合成一个整体的工艺。其整个过程,包括吻压、全压、冷压。在吻压阶段,树脂浸润粘合面并填充线路中的空隙,然后进入全压,把所有的空隙粘合。所谓冷压,就是使线路板快速冷却,并使尺寸保持稳定。 层压工艺需要注意的事项,首先在设计上,必须符合层压要求的内层芯板,主要是厚度、外形尺寸、的定位孔等,需要按照具体的要求进行设计,总体上内层芯板要求无开、短、断路,无氧化,无残留膜。 其次,多层板层压时,需对内层芯板进行处理,处理的工艺有黑氧化处理和棕化处理。氧化处理是在内层铜箔上形成一层黑色氧化膜,棕化处理工艺是在内层铜箔上形成一层**膜。 较后,在进行层压时,需要注意温度、压力、时间三大问题。温度,主要是注意树脂的熔融温度和固化温度、热盘设定温度、材料实际温度及升温的速度变化等,这些参数都需要注意。至于压力方面,以树脂填充层间空洞,排尽层间气体和挥发物为基本原则。时间参数,主要是加压时机的控制、升温时机的控制、凝胶时间等方面。 多层板进行阻抗、层叠设计考虑的基本原则有哪些? 在进行阻抗、层叠设计的时候,主要的依据就是PCB板厚、层数、阻抗值要求、电流的大小、信号完整性、电源完整性等,一般参考的原则如下: 叠层具有对称性; l 阻抗具有连续性; l 元器件面下面参考层尽量是完整的地或者电源(一般是*二层或者倒数*二层); l 电源平面与地平面紧耦合; l 信号层尽量靠近参考平面层; l 两个相邻的信号层之间尽量拉大间距。走线为正交; l 信号上下两个参考层为地和电源,尽量拉近信号层与地层的距离; l 差分信号的间距≤2倍的线宽; l 板层之间的半固化片≤3张; l 次外层至少有一张7628或者2116或者3313; l 半固化片使用顺序7628→2116→3313→1080→106。

    pcb多层板的优劣势是什么? PCB多层板有什么优点,又有什么缺点呢?今天就为大家解释一下吧! 如果将PCB单面板和PCB多层板相比,先不讨论其内部质量如何,我们都可以通过表面看到差异。这些差异对于PCB在整个使用寿命内的耐久性和功能性非常重要。PCB多层板的主要优点:这种电路板具有抗氧化性。多样的结构、高密度、表面涂层技术,确保电路板的质量和安全,可以安全使用。以下是高可靠性多层板的重要特点,即PCB多层板的优缺点: 1.PCB多层板孔壁铜厚度为正常是25微米。 优点:增强的可靠性,包括改善的z轴扩展阻力。 缺点:但也存在着一定的风险:在实际使用的情况下,在吹出或脱气,组装过程中的电连接性(内层分离,孔壁破裂)或在负载条件下发生故障的可能性的问题。IPC Class2(大多数工厂的标准)要求PCB多层板镀铜少于20%。 2.无焊接修复或开路修复 。 优点:**的电路确保可靠性和安全性,*维护,无风险。 缺点:如果维修不当,PCB多层板是开放的。即使适当固定,在负载条件(振动等)下也可能存在故障的风险,这可能导致实际使用中的故障。 3.**出IPC规范的清洁度要求。 优点:提高PCB多层板清洁度可提高可靠性。 风险:接线板上的残留物,焊料的积聚会给防焊层带来风险,离子残留物会导致焊接表面被腐蚀和污染的风险,这可能导致可靠性问题(差焊接点/电气故障)并较终增加实际故障发生的概率。 4.严格控制每个表面处理的使用寿命。 优点:焊接,可靠性和降低水分侵入的风险。 风险:是旧PCB多层板的表面处理可能导致金相变化,可能会有焊锡性问题,而水分侵入可能导致组装过程中的问题或分层的实际使用,内壁和壁壁的分离(开路)等。 无论是在制造组装流程还是在实际使用中,PCB多层板都要具有可靠的性能,当然这个跟PCB打板工厂的设备、工艺技术水平都有一定的关联。

    PCB多层板和堆叠规则 1、每个PCB都需要良好的基础:组装说明 PCB的基础方面包括介电材料,铜和走线尺寸以及机械层或尺寸层。用作电介质的材料为PCB提供了两个基本功能。当我们构建能够处理高速信号的复杂PCB时,介电材料会隔离在PCB相邻层上发现的信号。PCB的稳定性取决于整个平面上电介质的一致阻抗以及在宽频率范围内的一致阻抗。 尽管看起来铜作为导体很明显,但还存在其他功能。铜的不同重量和厚度会影响电路实现正确电流量和定义损耗量的能力。就接地层和电源层而言,铜层的质量会影响接地层的阻抗和电源层的热导率。使差分信号对的厚度和长度相匹配可以巩固电路的稳定性和完整性,尤其是对于高频信号而言。 物理尺寸线、尺寸标记、数据表、切口信息、通孔信息、工具信息和组装说明不仅描述了机械层或尺寸层,而且还充当了PCB基础的度量。组装信息控制电子部件的安装和位置。由于“印制电路组装”过程将功能组件连接到PCB上的走线,因此组装过程要求设计团队专注于信号管理、热管理、焊盘放置、电气和机械组装规则之间的关系,以及组件的物理安装符合机械要求。 每个PCB设计都需要IPC-2581中的组装文档。其他文件包括物料清单、Gerber数据、CAD数据、示意图、制造图、注释、装配图、任何测试规格、任何质量规格以及所有法规要求。这些文档中包含的准确性和细节减少了设计过程中任何出现错误的机会。 2、必须遵循的规则:排除和布线层 在房屋中安装电线的电工必须遵守规则,以确保电线不会出现急剧弯曲或变得易受用于安装石膏板的钉子或螺钉影响。使电线穿过双头螺栓墙需要以一致的方式来确定布线路径的深度和高度。 保持层和布线层为PCB设计建立了相同的约束条件。保持层定义了设计软件的物理约束(例如组件放置或机械间隙)或电气约束(例如布线保持)。布线层建立组件之间的互连。根据PCB的应用和类型,可以在PCB的**层和底层或内部层中放置布线层。 为接地平面和电源平面寻找空间 每个房屋都有一个主要的电气服务面板或负载中心,可以接收来自公用事业公司的进来的电力,并将电力分配给为灯、插座、电器和设备供电的电路。PCB的接地层和电源层通过将电路接地和将不同的板上电压分配给组件来提供相同的功能。与服务面板一样,电源和接地层可以包含多个铜段,这些铜段允许电路和子电路连接到不同的电位。 保护电路板,保护走线 专业的房屋油漆工会仔细记录天花板,墙壁和装饰的颜色和饰面。在PCB上,丝网印刷层使用文本来***层和底层上组件的位置。通过丝网印刷获得信息可以使设计团队免于引用装配文件。 由房屋油漆工施加的底漆,油漆,污渍和清漆可添加引人入胜的颜色和纹理。此外,这些表面处理可以保护表面不致变质。同样,当某种类型的碎屑落在走线上时,PCB上的薄阻焊层可帮助PCB防止走线短路。 3、PCB叠层规则 随着PCB技术的改进和消费者对更快,更强大产品的需求的增加,PCB已从基本的两层板变为具有四,六层以及多达十至三十层的电介质和导体的板。为什么要增加层数?拥有更多的层可以提高电路板分配功率,减少串扰,消除电磁干扰并支持高速信号的能力。用于PCB的层数取决于应用、工作频率、引脚密度和信号层要求。 通过两层堆叠,**层(即*1层)用作信号层。四层堆叠使用**层和底层(或*1层和*4层)作为信号层,在此配置中,*2层和*3层用作平面。预浸料层将两个或多个双面板粘合在一起,并充当层之间的电介质。六层PCB增加了两层铜层,*二层和*五层作为平面。第1、3、4和6层承载信号。 继续前进到六层的结构,内层二三(当为双面板)和四五(当为双面板)为芯板层,芯板之间夹半固化片(PP)。由于半固化片材料尚未完全固化,因此材料比芯材柔软。PCB制造过程将热量和压力施加到整个堆叠体上,并使半固化片和纤芯熔化,以便各层可以粘结在一起。 多层板为堆叠增加了更多的铜层和电介质层。在八层PCB中,电介质的七个内部行将四个平面层和四个信号层粘合在一起。十到十二层板增加了电介质层的数量,保留了四个平面层,并增加了信号层的数量。

    FPC挠性印制电路板加工工艺知识 一、FPC挠性印制电路板概述 印制电路板是电子行业的基础产品,广泛应用于通讯设备、计算机、汽车电子和工业装备及各种家用电器等电子产品,其主要功能是支撑电路元件和互连电路元件。FPC挠性印制电路板是印制电路板中一个大类,如图1、图2。根据FPC挠性印制电路板的结构,按导体层数可分为单面板、双面板、多层板。 1、FPC柔性电路板的挠曲性和可靠性 目前FPC柔性电路板有:单面、双面、多层柔性板和刚柔性板四种。 ①单面柔性板是成本较低,当对电性能要求不高的印制板。在单面布线时,应当选用单面柔性板。其具有一层化学蚀刻出的导电图形,在柔性绝缘基材面上的导电图形层为压延铜箔。绝缘基材可以是聚酰亚胺,聚对苯二甲酸乙二醇酯,芳酰胺纤维酯和聚氯乙烯。 ②双面柔性板是在绝缘基膜的两面各有一层蚀刻制成的导电图形。金属化孔将绝缘材料两面的图形连接形成导电通路,以满足挠曲性的设计和使用功能。而覆盖膜可以保护单、双面导线并指示元件安放的位置。 ③多层柔性板是将3层或更多层的单面或双面FPC柔性电路板层压在一起,通过钻孑L、电镀形成金属化孔,在不同层间形成导电通路。这样,不需采用复杂的焊接工艺。多层电路在更高可靠性,更好的热传导性和更方便的装配性能方面具有巨大的功能差异。在设计布局时,应当考虑到装配尺寸、层数与挠性的相互影响。 ④传统的刚柔性板是由刚性和柔性基板有选择地层压在一起组成的。结构紧密,以金属化孑L形成导电连接。如果一个印制板正、反面都有元件,刚柔性板是一种很好的选择。但如果所有的元件都在一面的话,选用双面柔性板,并在其背面层压上一层FR4增强材料,会更经济。 ⑤混合结构的FPC柔性电路板是一种多层板,导电层由不同金属构成。一个8层板使用FR-4作为内层的介质,使用聚酰亚胺作为外层的介质,从主板的三个不同方向伸出引线,每根引线由不同的金属制成。康铜合金、铜和金分别作独立的引线。这种混合结构大多用在电信号转换与热量转换的关系及电性能比较苛刻的低温情况下,是惟一可行的解决方法。 可通过内连设计的方便程度和总成本进行评价,以达到较佳的性能价格比。 2、FPC柔性电路板的经济性 如果电路设计相对简单,总体积不大,而且空间适宜,传统的内连方式大多要便宜很多。如果线路复杂,处理许多信号或者有特殊的电学或力学性能要求,FPC柔性电路板是一种较好的设计选择。当应用的尺寸和性能**出刚性电路的能力时,柔性组装方式是较经济的。在一张薄膜上可制成内带5mil通孔的12mil焊盘及3mil线条和间距的FPC柔性电路板。因此,在薄膜上直接贴装芯片更为可靠。因为不含可能是离子钻污源的阻燃剂。这些薄膜可能具有防护性,并在较高的温度下固化,得到较高的玻璃化温度。柔性材料比起刚性材料节省成本的原因是免除了接插件。 高成本的原材料是FPC柔性电路板价格居高的主要原因。原材料的价格差别较大,成本较低的聚酯FPC柔性电路板所用原材料的成本是刚性电路所用原材料的1.5倍;高性能的聚酰亚胺FPC柔性电路板则高达4倍或更高。同时,材料的挠性使其在制造过程中不易进行自动化加工处理,从而导致产量下降;在较后的装配过程中易出现缺陷,这些缺陷包括剥下挠性附件、线条断裂。当设计不适合应用时,这类情况更容易发生。在弯曲或成型引起的高应力下,常常需选择增强材料或加固材料。尽管其原料成本高,制造麻烦,但是可折叠、可弯曲以及多层拼板功能,会使整体组件尺寸减小,所用材料随之减少,使总的组装成本降低。 FPC柔性电路板产业正处于规模小但迅猛发展之中。聚合物厚膜法是一种高效、低成本的生产工艺。该工艺在廉价的柔性基材上,选择性地网印导电聚合物油墨。其代表性的柔性基材为PET。聚合物厚膜法导体包括丝印金属填料或碳粉填料。聚合物厚膜法本身很清洁,使用无铅的SMT胶黏剂,不必蚀刻。因其使用加成工艺且基材成本低,聚合物厚膜法电路是铜聚酰亚胺薄膜电路价格的1/10;是刚性电路板价格的1/2~1/3。聚合物厚膜法尤其适用于设备的控制面板。在移动电话和其他的便携产品上,聚合物厚膜法适合将印制电路主板上的元件、开关和照明器件转变成聚合物厚膜法电路。既节省成本,又减少能源消耗。 一般说来,FPC柔性电路板的确比刚性电路的花费大,成本较高。柔性板在制造时,许多情况下不得不面对这样一个事实,许多的参数**出了公差范围。制造FPC柔性电路板的难处就在于材料的挠性,下面看下工艺。

    PCB板不同材质区别: 材料的燃烧性,又称阻燃性,自熄性耐燃性,难燃性,耐火性,可燃性等燃烧性是评定材料具有何种耐抗燃烧的能力。 燃性材料样品以符合要求的火焰点燃,经规定的时间移去火焰,根据试样燃烧的程度来评定燃烧性等级,共分三级,试样水平放置为水平试验法,分为 FH1,FH2,FH3 三级,试样垂直放置为垂直试验法分为 FV0,FV1,VF2 级。 固 PCB 板材有 HB 板材和 V0 板材之分。 HB 板材阻燃性低,多用于单面板, VO 板材阻燃性高,多用于双面板及多层板 符合 V-1 防火等级要求的这一类 PCB 板材成为 FR-4 板材。 V-0,V-1,V-2 为防火等级。 电路板必须耐燃,在一定温度下不能燃烧,只能软化。这时的温度点就叫做玻璃态转化温度(Tg 点),这个值关系到 PCB 板的尺寸安定性。 什么是高 Tg PCB 线路板及使用高 Tg PCB 的优点? 高 Tg 印制板当温度升高到某一区域时,基板将由"玻璃态”转变为“橡胶态”,此时的温度称为该板的玻璃化温度(Tg)。也就是说,Tg 是基材保持刚性的较高温。 PCB 板材具体有那些类型? 按档次级别从底到高划分如下: 94HB - 94VO - 22F - CEM-1 - CEM-3 - FR-4 详细介绍如下: 94HB:普通纸板,不防火(较低档的材料,模冲孔,不能做电源板) 94V0:阻燃纸板 (模冲孔) 22F:单面半玻纤板(模冲孔) CEM-1:单面玻纤板(必须要电脑钻孔,不能模冲) CEM-3:双面半玻纤板(除双面纸板外属于双面板较低端的材料,简单的 双面板可以用这种料,比 FR-4 会便宜 5~10 元/平米) FR-4: 双面玻纤板 电路板必须耐燃,在一定温度下不能燃烧,只能软化。这时的温度点就叫做玻璃态转化温度(Tg 点),这个值关系到 PCB 板的尺寸安定性。 什么是高 Tg PCB 线路板及使用高 Tg PCB 的优点高 Tg 印制板当温度升高到某一区域时,基板将由"玻璃态”转变为“橡胶态”,此 时的温度称为该板的玻璃化温度(Tg)。也就是说,Tg 是基材保持刚性的较高温度(℃)。也就是说普通 PCB 基板材料在高温下,不但产生软化、变形、熔融等现象,同时还表现在机械、电气特性的急剧下降(我想大家不想看 pcb 板的分类见自己的产品出现这种情况)。 一般 Tg 的板材为 130 度以上,高 Tg 一般大于 170 度,中等 Tg 约大于 150度。 通常 Tg≥170℃的 PCB 印制板,称作高 Tg 印制板。 基板的 Tg 提高了,印制板的耐热性、耐潮湿性、耐化学性、耐稳定性等特征都会提高和改善。TG 值越高,板材的耐温度性能越好,尤其在无铅制程中,高Tg 应用比较多。 高 Tg 指的是高耐热性。随着电子工业的飞跃发展,特别是以计算机为代表的电子产品,向着高功能化、高多层化发展,需要 PCB 基板材料的更高的耐热性作为重要的保证。以 SMT、CMT 为代表的高密度安装技术的出现和发展,使PCB 在小孔径、精细线路化、薄型化方面,越来越离不开基板高耐热性的支持。 所以一般的 FR-4 与高 Tg 的 FR-4 的区别:是在热态下,特别是在吸湿后受 热下,其材料的机械强度、尺寸稳定性、粘接性、吸水性、热分解性、热膨胀性等各种情况存在差异,高 Tg 产品明显要好于普通的 PCB 基板材料。 近年来,要求制作高 Tg 印制板的客户逐年增多。 随着电子技术的发展和不断进步,对印制板基板材料不断提出新要求,从而,促进覆铜箔板标准的不断发展。目前,基板材料的主要标准如下。 ①国家标准目前,我国有关基板材料 pcb 板的分类的国家标准有 GB/ T4721—47221992 及 GB4723—4725—1992,中国台湾地区的覆铜箔板标准为CNS 标准,是以日本 JIs 标准为蓝本制定的,于 1983 年发布。 ②其他国家标准主要标准有:日本的 JIS 标准,美国的 ASTM、NEMA、MIL、IPc、ANSI、UL 标准,英国的 Bs 标准,德国的 DIN、VDE 标准,法国的 NFC、UTE 标准,加拿大的 CSA 标准,澳大利亚的 AS 标准,前苏联的 FOCT 标准,国际的 IEC 标准等 原 PCB 设计材料的供应商,大家常见与常用到的就有:生益\建涛\国际等等 ● 接受文件 :protel autocad powerpcb orcad gerber 或实板抄板等 ● 板材种类 :CEM-1,CEM-3 FR4,高 TG 料; ● 较大板面尺寸 :600mm*700mm(24000mil*27500mil) ● 加工板厚度 :0.4mm-4.0mm(15.75mil-157.5mil) ● 较高加工层数 :16Layers ● 铜箔层厚度 :0.5-4.0(oz) ● 成品板厚公差 :+/-0.1mm(4mil) ● 成型尺寸公差 :电脑铣:0.15mm(6mil) 模具冲板:0.10mm(4mil) ● 较小线宽/间距:0.1mm(4mil) 线宽控制能力 :<+-20% ● 成品较小钻孔孔径 :0.25mm(10mil) 成品较小冲孔孔径 :0.9mm(35mil) 成品孔径公差 :PTH :+-0.075mm(3mil) NPTH:+-0.05mm(2mil) ● 成品孔壁铜厚 :18-25um(0.71-0.99mil) ● 较小 SMT 贴片间距 :0.15mm(6mil) ● 表面涂覆 :化学沉金、喷锡、整板镀镍金(水/软金)、丝印兰胶等 ● 板上阻焊膜厚度 :10-30μm(0.4-1.2mil) ● 抗剥强度 :1.5N/mm(59N/mil) ● 阻焊膜硬度 :>5H ● 阻焊塞孔能力 :0.3-0.8mm(12mil-30mil) ● 介质常数 :ε= 2.1-10.0 ● 绝缘电阻 :10KΩ-20MΩ ● 特性阻抗 :60 ohm±10% ● 热冲击 :288℃,10 sec ● 成品板翘曲度 :〈 0.7% ● 产品应用:通信器材、汽车电子、仪器仪表、**定位系统、计算机、MP4、电源、家电等 按照PCB板增强材料一般分为以下几种: 1、酚醛PCB纸基板 因为这种PCB板由纸浆木浆等组成,因此有时候也成为纸板、V0板、阻燃板以及94HB等,它的主要材料是木浆纤维纸,经过酚醛树脂加压并合成的一种PCB板。 这种纸基板特点是不防火,可进行冲孔加工﹑成本低﹑价格便宜﹐相对密度小。酚醛纸基板我们经常看见的有XPC、FR-1、FR-2、FE-3等。而94V0属于阻燃纸板,是防火的。 2、复合PCB基板 这种也成为粉板, 以木浆纤维纸或棉浆纤维纸为增强材料﹐同时辅以玻璃纤维布作表层增强材料﹐两种材料用阻燃环氧树脂制作而成。有单面半玻纤22F、CEM-1以及双面半玻纤板CEM-3等,其中CEM-1和CEM-3这两中是目前较常见的复合基覆铜板。 3、玻纤PCB基板 有时候也成为环氧板、玻纤板、 FR4、纤维板等﹐它是以环氧树脂作粘合剂﹐同时用玻璃纤维布作增强材料。这种电路板工作温度较高﹐受环境影响很小、在双面PCB经常用这种板﹐但是价格相对复合PCB基板价格贵,常用厚度1.6MM。这种基板适合于各种电源板、高层线路板,在计算机及外围设备、通讯设备等应用广泛。阻燃特性:VO板
    绝缘层厚度:常规板
    层数:多面
    基材:铜
    绝缘材料:**树脂
    绝缘树脂:环氧树脂(EP)

    http://u919530.b2b168.com
    欢迎来到深圳市赛孚电路科技有限公司网站, 具体地址是广东省深圳市东莞市长安镇睦邻路7号,联系人是陈生。 主要经营PCB线路板,PCB电路板,PCB多层板,HDI板,PCB打样,软硬结合板,PCB快板。 单位注册资金未知。 本公司主营:电子 PCB机元器件 多层电路板 等产品,是一家优秀的电子产品公司,拥有优秀的高中层管理队伍,他们在技术开发、市场营销、金融财务分析等方面拥有丰富的管理经验,选择我们,值得你信赖!